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Antonio Turiel a,*, Conrad J. Pérez-Vicente b, Jacopo Grazzini c

a Physical Oceanography Group, Institut de Ciencies del Mar – CMIMA (CSIC), Passeig Maritim de la

Barceloneta, 37-49, 08003 Barcelona, Spain
b Complex System Group, Departament de Fisica Fonamental, Universitat de Barcelona, Diagonal, 647, 08028 Barcelona, Spain

c Regional Analysis Division, Institute of Applied Computational Mathematics (FORTH), Vassilika Vouton, 71110 Heraklion, Greece

Received 14 March 2005; received in revised form 7 December 2005; accepted 8 December 2005
Available online 23 January 2006
Abstract

Physical variables in scale invariant systems often show chaotic, turbulent-like behavior, commonly associated to the
existence of an underlying fractal or multifractal structure. However, the assessment of multifractality over experimental,
discretized data requires of appropriate methods and to establish criteria to measure the confidence degree on the esti-
mates. In this paper we have evaluated the quality of different techniques used for multifractal analysis. We have tested
four different techniques: the moment (M) method, the wavelet transform modulus maxima (WTMM) method, the gradi-
ent modulus wavelet projection (GMWP) method and the gradient histogram (GH) method, which are used to estimate the
singularity spectra of multifractal signals. The test consists in analyzing synthetic multifractal 1D signals with given mul-
tifractal spectrum. We have compared the results, studying the sensibility of each method to the length of the series, size of
the ensemble and type of spectrum. Our results show that GMWP method is the one attaining the best performance,
providing reliable estimates which can be improved when the statistics is increased. All the other methods are affected
by problems such as the linearization of the right tail of the spectrum, and some of them are very demanding in data.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The multifractal formalism provides a scale invariant mechanism for the analysis and generation of com-
plex signals which fits well with the observed experimental properties of fully developed turbulence (FDT) [1]
as well as other physical systems which range from natural images [2] to heartbeat dynamics [3] or econometric
signals [4] to cite some examples. The multifractal formalism also allows to implement new coding strategies
[5,6] and to highlight relevant dynamical features of the systems under study [7]. In addition, theoretical
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models can be devised to fit the observed multifractal properties [8,4]. These facts explain why it is triggering
an increasing interest in the scientific community.

The process of characterization of multifractality from experimental data must be performed with care. In
essence, multifractality is a property verified in the infinitesimal limit only, while empirical data have an
inherent discrete nature. Therefore, any tool designed to validate the multifractal character of a given signal
faces several difficulties elicited by the finite size and the discretization of the data record. In addition, any
technique used to validate the multifractal behavior of a signal necessarily involves some interpolation
scheme which can make it prone to some bias. For that reason, it is very convenient to know beforehand
the range of validity, limitations and biases as well as the theoretical foundations of any method (‘‘validation
method’’, in the rest of the paper) devoted to carry out this task. This knowledge allows to determine the
degree of reliability of the estimates and to define a framework where alternative methodologies can be
compared.

In this paper, we will study the theoretical foundations, performance and reliability of four different vali-
dation techniques for the analysis of multifractality from experimental data. We will discuss the performance
of each method according to their capability to retrieve the correct singularity spectrum from a given data set.
As a test benchmark we will use synthetic data generated following a simple model originally devised for the
description of turbulent data. With this setup we have a prior knowledge of the singularity spectra of the data
and, as a consequence, the possibility to calibrate the quality of the answers. We have worked with 1D series,
but the generating model, methods and results can be generalized to higher dimensions. In this paper’s web-
page [9] the reader can find C source codes which generate synthetic 1D and 2D multifractals and which also
implement the validation techniques.

The paper is structured as follows: Next section is devoted to introduce general aspects of multifractal
theory, required for a proper understanding of the methods. In Section 3, we will present the four validation
techniques. Section 4 is devoted to the definition and presentation of the three benchmarks of synthetic series
as well as the different ensembles of signals that will be processed. In Section 5 we will use the first benchmark
to illustrate the different particularities of each method, discussing their potential advantages and known
drawbacks. Section 6 is devoted to provide quantitative measurements on the performance of the different val-
idation techniques, using the two other benchmark of synthetic signals to study the dependence on the amount
and type of statistics of the studied data. A general discussion, with the overall evaluation and comparison of
the methods is given in Section 7. Finally, in Section 8 we present the conclusions of our work.
2. Multifractal theory

The origins of multifractal theory can be tracked back to the seminal works by Kolmogorov [10]. Under
conditions of intense turbulence (fully developed turbulence), variables as the velocity or the local dissipation
of energy vary sharply from one location to another and can be regarded not as deterministic quantities but as
random ones. Let, for instance, �rð~xÞ be the local dissipation of energy around the point~x and over a neigh-
borhood of radius r, whose expression is given by the following formula:
�rð~xÞ ¼
1

jBrð~xÞj

Z
Brð~xÞ

d~x0
X

ij

½oivjð~x0Þ þ ojvið~x0Þ�2; ð1Þ
where vi are the components of the velocity vector and Brð~xÞ stands for the ball of radius r centered around~x.
Kolmogorov’s intuition was that the energy is transmitted from the larger scales (L) to the smaller ones (r) by
means of an injection process defined by a variable grL which in fact only depends on the ratio r/L, as
�r ¼ grL�L. ð2Þ

In Kolmogorov’s original work the energy injection variable grL has a fixed value, grL ¼ ½rL �

�a, from which it
can immediately deduced that the order p moments of �r can be related with those of �L in a very simple way,
namely
h�p
r i ¼

r
L

h i�ap
h�p

Li / r�ap;
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where Æ Æ æ denotes an average over an ensemble of~v realizations. All the dependence in r of the order-p moment
of �r is concentrated in the power-law r�ap, which is similar to what experimental measures show, namely:
1 Ho
�rð~xÞ ¼
h�p
r i / rsp ; ð3Þ
a property which is known as self-similarity (SS). Unfortunately, the exponents sp obtained in the experiments
do not have a linear dependence on p. In general, sp as a function of p is a convex curve, a phenomenon which
is known as ‘‘anomalous scaling’’ [11], in opposition to the ‘‘normal’’ (linear) scaling. To describe the ‘‘anom-
alous scaling’’ Kolmogorov’s decomposition can still be applied1 but now grL in Eq. (2) has to be interpreted
as a random variable, independent of �L. Moreover, in order to produce a consistent scheme, the variables grL

have to be infinitely divisible [12], to ensure that downwards process from scale L to scale r is verified directly
or in several stages (forming the famous cascade process). The experimental property of self-similarity led
researchers to propose a model for its generation based on the existence of local scale-invariant laws. First,
it is assumed that at any point~x the following equation holds:
�rð~xÞ / rhð~xÞ as r& 0; ð4Þ

that is, the dependency on a vanishing positive scale parameter r is conveyed by the power-law factor rhð~xÞ. The
exponent hð~xÞ, which is a function of the point~x under study, is called the singularity exponent of the point.
Then, the singularity exponents can be arranged in special sets called singularity components Fh defined as
F h ¼ f~x : hð~xÞ ¼ hg. ð5Þ

In order to close the model, it is required that the singularity components are of fractal character (and for that
reason they are also known as fractal manifolds). The singularity spectrum (also known as the Hausdorff spec-
trum) associated to the multifractal hierarchy of fractal components is the function D(h) defined by the fractal
(Hausdorff) dimension of each component Fh, namely
DðhÞ ¼ dimH F h. ð6Þ

Following the famous derivation by Parisi and Frisch [13], under some assumptions on the homogeneity and
isotropy of the statistics of local singularities, it is possible to derive a relation between self-similarity expo-
nents sp and the singularity spectrum D(h). They proved that the SS exponents sp can be computed from
the Legendre transform of the singularity spectrum D(h),
sp ¼ infhfhp þ d � DðhÞg; ð7Þ

where d stands for the dimension of the embedding space. By means of Eq. (7) it is possible to relate statistics
and geometry. It is then evident that the singularity spectrum contains all the information about SS, hence
about the multiplicative process, Eq. (2), what is the same as saying that it describes the statistics of changes
in scale. How much information is actually conveyed by the singularity spectrum? In fact, there are features of
a signal which are not described by the singularity spectrum. There is no known way to split a signal in a mul-
tifractal part, responsible of the singularity spectrum, and a mono-fractal or something similar what would
explain the remaining features, although some attempts have been made in that direction [14,15]. Anyway,
a precise knowledge of the singularity spectrum will provide valuable information on the inner structure of
a system.

The Hausdorff spectrum, i.e., the one given by Eq. (6), is in fact what we need, but it is difficult to estimate.
The main inconveniences with such a definition is that is very difficult to explicitly assign a singularity expo-
nent to each point (see discussion in Section 3.2), to decompose the signal into its fractal manifolds and, in
addition, even when the multifractal decomposition of the signal is available there are numerical problems
to provide a good estimate of the fractal dimensions. Box-counting and related measures [16] are usually
ill-behaved, specially when the fractal components are (ideally) dense sets. And a direct application of the def-
inition of Hausdorff dimension (which implies to search optimal coverings with sets of diameter at most �, then
let �! 0) is impossible for values of � below the discretization size.
wever notice that Eq. (2) applies in a statistical sense only, that is, for a given basis point ~x you cannot conclude the following:
grLð~xÞ�Lð~xÞ. This last relation can only hold in an appropriate representation basis [6].
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Thus, the singularity spectrum is often estimated using indirect methods which are numerically more stable.
We will concentrate on the so-called Legendre spectrum. One of the advantages of Parisi–Frisch’s formula, Eq.
(7), is that it can be inverted. By definition, the Legendre spectrum corresponds to the Legendre transform of
the SS exponents sp
DlðhÞ ¼ infpfhp þ d � spg;

where, as before, d stands for the dimension of the environment space. It is simple and accessible for numerical
calculations. The main disadvantage is that, by construction, the Legendre spectrum is convex, so if the Haus-
dorff spectrum is not convex the Legendre spectrum will equal its convex hull.

In mathematical literature, it is common to consider that a system is multifractal only when the Hausdorff
spectrum, the Legendre spectrum and another spectrum not introduced here, the large deviation spectrum,
coincide. This point of view is a bit restrictive; in fact, from the physical point of view the only relevant spec-
trum is the one which links statistics and geometry: the Hausdorff spectrum. It should be noticed that the
first two methods are based on the estimation of the Legendre spectrum while the last two methods analyzed
give direct access to the Hausdorff spectrum, which makes them more reliable. Anyway, Hausdorff and
Legendre spectra are coincident for the signals used in our benchmark due to the model used to generate
them.
3. Presentation of the different methods

We have analyzed the performance of four methods on the estimation of the singularity spectrum of exper-
imental data. In the experiences shown in this paper, and to simplify the analysis, we will only consider scalar
signals defined in a 1D space, although all the derivations could be extended to scalar signals in higher dimen-
sional spaces. For that reason, in order to keep the presentation as general as possible all the quantities will be
described in terms of a vector spatial variable (position)~x. Thus, a generic multifractal signal will be denoted
by sð~xÞ. Let us first introduce the theoretical foundations of each method.
3.1. M method

Moment (M) method is primarily a statistical method. It is based on getting the Legendre spectrum from SS
exponents associated [1,8] either to an appropriate scale-dependent variable like �r (in the simplest formula-
tion) or to a partition function (in a more sophisticated version). In the study of turbulence, the variable �r

is usually identified with the energy dissipation over a ball of radius r [12] or the wavelet projection at scale
r of a velocity component [17]. The advantages and limitations of using wavelet projections are discussed
in the following section. In this paper, we will use the first, simpler version. Then, our implementation is done
according the following steps:

1. Definition of the variable �rð~xÞ: Following [2,5,7,18] and inspired by the local dissipation of energy in tur-
bulent flows, Eq. (1), we define �r at each point~x as
�rð~xÞ ¼
1

jBrj

Z
Brð~xÞ

d~x0jrsjð~x0Þ. ð8Þ
The integral above is estimated by simple step rectangles. Such a variable has been shown to exhibit SS in
many contexts [2,5].

2. Calculus of the moments: We average �p
r ð~xÞ over all the points~x in the ensemble (all points are considered, as

we assume that spatial correlations do not significantly alter the value of moments). For each value of r, we
compute the moments for a particular, finite sequence of p’s: p1,p2, . . . , pn. For each order pi we evaluate the
value of the associated spi

as the slope of the linear regression of logh�pi
r i vs. log r.

3. Computing the spectrum: Interpolating sp by a second-order spline, we evaluate the slope of the curve sp vs.
p at each pi. The value, an estimate of the derivative of sp at pi, corresponds to a value hi in the spectrum:
hi ¼ dsp

dp ðpiÞ. The corresponding value of the Legendre spectrum is given by DðhiÞ ¼ hipi þ d � spi
.
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3.2. Wavelet transform modulus maxima method

Inspired in early works by Mallat [19] on the use of wavelet projections to provide a multiresolution rep-
resentation of signals, the concept of wavelet transform modulus maxima (WTMM) was originally introduced
by Mallat and Zhong [20] in the context of signal processing and later on applied by Muzy et al. [17] in the
analysis of turbulent flows, in order to solve some processing problems with experimental data. The main idea
of WTMM method [17,21–23] is to obtain the multiresolution skeleton of the signal, a characteristic set of
scale-space lines which, following Mallat’s conjecture [24], would be enough to provide a complete description
of the signal and which would be concentrated on the separation of structures according to their scale of influ-
ence. This multiresolution skeleton are the lines of WTMM, that is, the set of lines where the wavelet trans-
form reaches a local maximum (with respect to the position coordinate). It was claimed in [17] that the
branching structure of the skeleton defined by these lines in the scale-space plane highlights the hierarchical
organization of the singularities.

To understand the basic elements of WTMM we need to remind what wavelet projections are. In the con-
text of this paper, a wavelet W is a function which can be used to analyze the local properties of any signal.
Given a signal sð~xÞ, the wavelet projection (or wavelet transform, WT) of this signal over the wavelet W at the
point~x and the scale of observation r is denoted by T Wsð~x; rÞ, and it is defined by
T Wsð~x; rÞ �
Z

d~x0sð~x0Þ 1

rd
W

~x�~x0

r

� �
¼ s�Wrð~xÞ; ð9Þ
where � stands for the convolution product and the function Wrð~xÞ is given by Wrð~xÞ � 1
rd Wð~xrÞ. Therefore, the

wavelet projection consists in convolving the signal with an appropriate ‘‘focus kernel’’ Wr which can be tuned
with the scale parameter r in order to zoom in and out the details surrounding each point~x under analysis. A
signal s would be considered multifractal if for any W such that W annihilates a certain number m of polyno-
mial moments (in order to filter away long-range correlations which could mask the local multifractal struc-
ture [17,22]) it is verified that:
jT Wsð~x; rÞj � rhð~xÞ as r& 0; ð10Þ

where the obtained local singularity exponent hð~xÞ should be otherwise independent of the wavelet used for all
hð~xÞ < m (where m is the wavelet order) [22,25]. The WTMM method takes advantage of the scale-space par-
titioning given by the skeleton of maxima lines to define a partition function Z(r,p) of order p and scale r as the
sum over the set f~xaðrÞga of coordinates supporting maxima of the modulus of WT; namely,
Zðr; pÞ �
X

a

jT Wsð~xaðrÞ; rÞjp. ð11Þ
Summing only over those well-chosen points (the maxima lines) rather than making an average over the whole
sampling interval makes sense since most of the information is carried by the wavelet maxima lines [24].
Namely, the locations and values of the singularity exponents can be recovered from the scaling of WT along
the maxima lines. If the signal is multifractal and the wavelet appropriate [17], Zðr; pÞ � rsp as r!0 and so we
can proceed to obtain the Legendre spectrum, similarly to M method. However, some technical difficulties
must be solved. First, in order to get rid of some maxima with very low WT values (which may induce spurious
divergences), a refinement of Eq. (11) summands must be introduced, leading to a scale adaptive version of the
WTMM method
Zðr; pÞ �
X

a

sup
~x;r06r
jT Wsð~xaðr0Þ; r0Þj

 !p

; ð12Þ
where sup~x;r06r means that the supremum is taken for ð~x; r0Þ on each line of maxima at scales r 0 6 r. Secondly,
to avoid other numerical difficulties associated with the approximation of the Legendre transform (and mainly
due to the divergence of negative moments or some end points of the sampled singularities), it is often pre-
ferred to use the so-called canonical approach to compute the D(h) [26]. This method consists in computing
the average over a range of scales (r0, r1) of some appropriate quantities derived from the partition function
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Z(r,p). According to theory, these quantities must scale as rhðpÞ
1 and as rDðhðpÞÞ

1 and hence, just taking logarithms
and dividing by the logarithm of r1 the couple (h(p), D(h(p))) is obtained. The leading terms in the averages are
the ones defined by the smallest scale r1 and they also scale as rhðpÞ

1 and as rDðhðpÞÞ
1 , but to average over the full

scaling line is convenient, as it allows to diminish the influence of errors and oscillations. For further infor-
mation, see [27].

It is important to remark that, as we are processing the signal itself, and not its gradient (as in M method),
the exponents sp are shifted by +p with respect to those of M method. Conversely, you can say that the sin-
gularities h are shifted by +1 and thus the singularity spectrum appears horizontally displaced by this factor
[5,28]. We have taken that shift into account when representing the results from WTMM, shifting WTMM
spectra by �1 to obtain results directly comparable to those of other methods.

Although our code includes a home-made implementation of the WTMM method, we have implemented
WTMM method using the algorithms provided by some built-in software very often referenced in the litera-
ture: a GPL stand-alone software called LastWave [29], and two add-on toolboxes for the computing environ-
ment Matlab: WaveLab [30] and FracLab [31]. In this way, we intended to obtain closer outcomes to those of
standard literature. The scripts which perform all the calculations with the different softwares can also be
found in [9]. For simplicity, in this paper we will show only the results provided by LastWave. The basic imple-
mentation of WTMM therein consists in the following basic steps:

1. Compute the WT: After choosing an appropriate analyzing wavelet W, we compute the WT T Wsð~x; rÞ
according to Eq. (9) for several translations and dilations. We will discuss about the different parameters
of the projection (wavelet, minimal scale, etc.) below. The wavelet projections are obtained via FFT with
aliasing corrections.

2. Find the extremal representation associated to the WT: We locate the local maxima of the absolute
value of the WT as a function of position at each scale. The modulus maxima are points ð~x0; r0Þ such
that jT Wsð~x; r0Þj < jT Wsð~x0; r0Þj when ~x belongs to either the right or left part of the neighborhood of
~x0.

3. Connect (chain) the maxima lines: We have to check whether a local maximum ð~x0; r0Þ at a given scale r0 is
located close to a maximum at a smaller scale r < r0. A simple search on the nearest neighbors is performed,
in this case. The maxima lines a are obtained as the set of connected curves in the scale space ð~x; rÞ along
which all points are modulus maxima.

4. Track the maxima across the scales: Then, we track maxima lines for increasing scale r by choosing at each
scale the supremum sup~x;r06r between all previous values at smaller scales r 0 6 r. This way, we replace the
WT value of an extremum by the maximum value along its line.

5. Compute the partition function: We sum the maximum values of the WT along the modified maxima lines to
get the Z(r,p) according to Eq. (12).

6. Compute the scaling exponents: SS exponents sp are obtained as the slopes of the log–log plots
logZ(r,p) � sp log r + C(p) by linear regression over r.

7. Estimate the spectrum: Finally, the multifractal spectrum (h,D(h)) are computed from the sp through the
canonical approach.

To end let us remark that when working with ensembles consisting in more than a single signal, the parti-
tion function of each signal is evaluated, then all the partition functions are summed up, because WTMM par-
tition functions are additive [22] (contrarily to the standard concept of partition function in Statistical
Mechanics).

3.3. Gradient modulus wavelet projection method

The method based on the analysis of gradient modulus wavelet projections (GMWP) is primarily a geomet-
ric method. GMWP’s give explicit estimates of the values of hð~xÞ at every point ~x. In that sense, GMWP
method can be considered as a direct check of multifractality because it explicitly performs the multifractal
decomposition of a signal (something that can also be obtained with some refinements of WTMM techniques,
see [23]).
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GMWP method recovers the idea underlying the definition of local energy dissipation which was already
used in the moment method, and combines it with wavelet projections in order to get the assessment of the
local singularity exponents. Namely, we will work on the wavelet projections of the ‘‘function’’ |$s| (may it
be used in a distribution sense). A more precise formalism includes defining a multifractal measure [32]
dlð~xÞ ¼ d~x jrsjð~xÞ. ð13Þ

The existence of a multifractal hierarchy of singularity exponents, Eq. (4), is translated to the measure l by
stating
lðBrð~xÞÞ / rdþhð~xÞ as r& 0. ð14Þ
What is done in practice is to study the wavelet projections of the measure, T Wlð~x; rÞ � T Wjrsjð~x; rÞ, that is, to
study GMWP’s. The existence of a multifractal hierarchy then reads as
T Wjrsjð~x; rÞ / rhð~xÞ. ð15Þ
Eq. (15) has been taken as the starting point to check multifractality of signals in systems as diverse as natural
images [5], meteorological satellite images [18] or econometric series [7]. Obtaining explicit values of singularity
exponents for each point has the appeal of revealing the geometrical arrangement of multifractality. In addi-
tion, it can be checked point by point to which extent multifractality holds, just looking at the coefficients of
the log–log regression by which Eq. (15) is verified. The use of GMWP’s has another advantage with respect to
WTMM from the numerical point of view, which will be further discussed in Section 7: to compute GMWP’s
we do not need to use a wavelet annihilating a certain number of moments and even a positive function can be
used. Positive functions are not admissible wavelets, that is, they cannot be used to represent signals [33]; but
they can be used as analyzing wavelets, that is, they are able to describe local behaviors. Positive analyzing
wavelets provide finer resolution, because the minimal resolution that a wavelet projection can attain is related
to the number of zero-crossings of the wavelet [34].

Having access to the singularity exponents hð~xÞ at every point ~x we can directly estimate the singularity
spectrum using a histogram method [16]. If the exponents were obtained at a minimum resolution r0 then
the distribution of singularities q(h) verifies
qðhÞ / rd�DðhÞ
0 . ð16Þ
It should be remarked that Eq. (16) is not only the starting point for Parisi–Frisch’s derivation which was used
to define Legendre spectrum; it also allows to access to the Hausdorff spectrum, D(h), although in a probabi-
listic way. Something interesting about this formula is that it allows to interpret negative dimensions as events
with small probability [35].

Applying Eq. (15) we will obtain the singularity exponents at only one resolution r0, that is, the minimum
resolution in the regression. So that, we need some additional information in order to invert Eq. (16). One
possibility is to repeat the analysis at other resolutions, then to perform a linear regression of the logarithm
of q(h), Eq. (16), vs. log r. Although effective, this procedure can be numerically highly time consuming, as it
implies analyzing several times the whole series. But there is a simpler alternative when we can assume that the
multifractal has total support, which is valid except for monofractals (monofractals should then be treated by
the general scale regression method). In that case, there exists a fractal component F h1

of maximal fractal
dimension, D(h1) = d; according to Eq. (16) this fractal component is also that of maximal probability.
Assuming that there exists such a fractal component we can easily obtain the singularity spectrum
DðhÞ ¼ d � log qðhÞ=qðh1Þð Þ
log r0

. ð17Þ
The main advantages of GMWP are its ability to provide good spatial localization of singularities, a direct
access to this value for each point and its relatively easy implementation and simpler connection with theory,
with more direct measures. According to what has been discussed, our implementation of the GMWP method
runs as follows:



A. Turiel et al. / Journal of Computational Physics 216 (2006) 362–390 369
1. Calculus of the singularity exponents hð~xÞ: We estimate the gradient by finite differences, then we take its
modulus and the resulting function is wavelet-projected for every point at different resolutions r0, r1, . . . , rn.
Applying Eq. (15), at each fixed point~x we estimate the exponent hð~xÞ by a linear log–log regression (taking
r as the variable).

2. Obtention of the empirical histogram q(h).
3. Evaluation of singularity spectrum from histogram: We apply directly Eq. (17). In addition, we could also

propagate errors to obtain error bars, as indicated in Section 7.

3.4. Gradient histogram method

The gradient histogram (GH) method is a crude but fast version of GMWP method, which has the addi-
tional advantage of providing an explanation to a frequently observed feature of derivative histograms,
namely the existence of a small mode and heavy tails. The starting point for GH method is the multifractal
measure l, Eq. (14). Taking into account that lðBrð~xÞÞ ¼

R
Brð~xÞ d~x

0jrsjð~x0Þ, for a discretized signal, the gradient
at one point ~x can be approximated by the multifractal measure at that point and radius r0 (where r0 is the
minimum scale), in the way
2 Mo
jB1ð0Þjrd
0 jrsjð~xÞ � lðBr0

ð~xÞÞ ¼ alð~xÞrdþhð~xÞ
0 ; ð18Þ
where for the last equality we have made use of Eq. (14) and alð~xÞ denotes the non-scaling constant in that
relation. By statistical translational invariance,2 hlðBr0

Þi ¼ a0rd
0 for an appropriate non-scaling factor

a0 = |B1(0)|Æ|$s|æ so we obtain
log
jrsjð~xÞ
hjrsji ¼ log að~xÞ þ hð~xÞ log r0 ð19Þ
(where að~xÞ ¼ alð~xÞ=a0). Defining now the log-normalized gradient ~h,
~hð~xÞ � log jrsjð~xÞ=hjrsjið Þ
log r0

; ð20Þ
it follows that
~hð~xÞ ¼ hð~xÞ þ log að~xÞ
log r0

. ð21Þ
According to Eq. (21), the variable ~h is a good estimate of the singularity exponent h provided a r0 small
enough to make the variations of the non-scaling term log að~xÞ negligible. As r0 goes to zero the probability
distributions of ~h and h get closer and closer, so we obtain
qð~hÞ � qðhÞ ¼ Krd�DðhÞ
0 � Krd�Dð~hÞ

0 ; ð22Þ
where we have made use of Eq. (16). We can now proceed as in the previous method, applying the histogram
formula, Eq. (17), and derive from it the singularity spectrum. The main advantages of GH method concern its
great simplicity, both theoretical and numerical (which diminishes artifacts due to numerical effects). In addi-
tion, it directly connects multifractality with intermittency: intermittent variables usually have small values
(and hence a small mode) but depart significantly from the average with a certain probability (giving rise
to heavy tails). GH is a histogram-based method, so the spectrum is directly the Hausdorff spectrum and less
distortions are expected (as a contrast with methods based on the estimation of p-moments, which are strongly
affected by numerical instabilities associated to negative order moments). Our implementation of the GH
method has been performed in the following way:
nofractals are not translational invariant and so require a different treatment.
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1. Evaluation of the histogram for the log-normalized gradient variable: We compute finite differences at each
point, taking their moduli. We estimate the average of the modulus, Æ|$s|æ, over the sampled signal. From
that, we evaluate the log-normalized gradient at each point in direct application of Eq. (20) and construct
the histogram.

2. Direct application of the histogram formula: As for the GMWP method.

4. Definition of the benchmark

To test the previous methods we have created as a benchmark a set of multifractal signals with known sin-
gularity spectra. The signals have been generated with the model introduced by Benzi et al. [8]. Originally it
was developed to explain some properties of turbulent flows [8,36–38]. It has been also very efficient in the
study of the statistical properties of natural images [39]. One of the advantages of Benzi et al.’s model is that
for synthetic signals the three singularity spectra coincide, so the generative model generates simple, well-
behaved multifractals. The main disadvantage of the model is that it does not introduce intra-scale correla-
tions, although extensions are possible. In the following section we briefly explain the model.

4.1. Benzi, Biferale, Crisanti, Paladin, Vergassola and Vulpiani’s model for the generation of multifractal signals

Benzi et al.’s model works around a simple idea: to represent images in a wavelet basis [33] for which the
multiplicative cascade, Eq. (2), takes place point by point; that is, the equation is not only valid in a statistical
sense with an abstract variable grL but some corresponding spatial locations and scales can be connected by a
physical variable grLð~xÞ which has the appropriate infinitely divisible distribution and is independent from the
wavelet projection at scale L. Let us write Benzi et al.’s model more explicitly.

We will consider a wavelet W defining a dyadic wavelet basis. As it is dyadic, any change in scale is a power
of 2, and the positions are discretized in terms of the scale unit. We define the notation Wj~kð~xÞ ¼ Wð2j~x�~kÞ
with integer j, k1 and k2:~k ¼ ðk1; k2Þ. A synthetic signal sð~xÞ will be expressed as a combination of the elements
of this basis, in the way
sð~xÞ ¼
X

j

X
~k

aj~kWj~kð~xÞ. ð23Þ
The wavelet coefficients aj~k are not chosen in an arbitrary way, but in order to guarantee that sð~xÞ has a given
multifractal structure. The coefficients aj~k realize the multiplicative cascade between consecutive scales, in the
way
aj~k ¼ gj~kaj�1;½~k2�
; ð24Þ
where the operator [ Æ ] means the vector with components the integer part of its argument. Eq. (24) is the dis-
cretized counterpart of Eq. (2), except for an explicit spatial dependence in the g variable. By construction, all
the variables gj~k are taken independently of a

j�1;½~k2�
and having the same distribution. In fact the distribution of

g is defined by its p-moments as
hgpi ¼ 1

2

� �sp

; ð25Þ
where the SS exponents sp are given by the multifractal spectrum to be implemented, Eq. (7), and the basis 1
2

is a consequence of dealing with a dyadic representation (so L/r = 2 constantly). To construct a multifractal
of known singularity spectrum using Benzi et al.’s model, you should apply Eq. (7) to retrieve sp and from
sp derive the distribution of g using Eq. (25). As a possible alternative for obtaining the distribution of g,
you could make use of Eq. (16) to retrieve the distribution of h and take g = 2�h. Once the distribution of
g’s is known, you would start generating the values gj~k at random and independently according to that dis-
tribution, then use Eq. (24) to recursively construct the wavelet coefficients aj~k and from them synthesize the
signal as in Eq. (23). It can be proved that such synthetic signals sð~xÞ have the desired multifractal spectrum
[8,36,37].
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4.2. Test spectra

We have focused our analysis in two basic types of multifractal spectra, namely log-Poisson [12,40,41] and
log-Normal [42]. They are the best to illustrate the differences between bounded and unbounded singularity
spectra. Log-Poisson has been commonly used to model turbulence while log-Normal is always a good
first-order approximation to any spectrum around its mode.

Log-Poisson spectra correspond to translationally invariant infinitely divisible processes, which under infin-
itesimal changes in scale become binomial. By construction, log-Poisson spectra are bounded below, that is,
there exists a minimum value for the singularity exponents, that we will denote by h1.3 This parameter,
together with the dimension of the associated fractal dimension, D1, can be used to parameterize the spec-
trum. Log-Poisson spectra in dimension d spaces have the following form:
3 No
DðhÞ ¼ D1 þ ðd � D1ÞxðhÞ 1� log xðhÞð Þ; ð26Þ

where
xðhÞ � h� h1
ðd � D1Þð� log bÞ ð27Þ
and the dissipation parameter 0 6 b 6 1 is given by
b ¼ 1þ h1=ðd � D1Þ. ð28Þ
The log-Poisson spectrum defined in the equation above corresponds to the following SS exponents sp:
sp ¼ h1p þ ðd � D1Þð1� bpÞ. ð29Þ

Log-Normal processes correspond to unbounded spectra of the simplest type. Log-Normal spectra are
parabolic,
DðhÞ ¼ d � 1

2

h� hm

rh

� �2

. ð30Þ
As for log-Poisson multifractals, log-Normal multifractals are also characterized by two parameters: the mean
singularity hm and the singularity dispersion, rh. The corresponding sp exponents are given by the following
expression:
sp ¼ hmp � 1

2
r2

hp2. ð31Þ
Log-Poisson multifractals have a minimum singularity greater than �1. Let us recall that we are talking about
the singularities for the gradient, which are shifted by �1 with respect to those of the signal [5,28]. This means
that all log-Poisson signals have a minimum singularity greater than 0: these series are bounded on any
compact set, they are ‘‘physical signals’’ as they cannot diverge to infinity at any point. In contrast, series with
log-Normal statistics are unbounded, what implies that for any interval you can (and you will) find points at
which the signal diverges to infinity in the limit of infinite resolution. Of course, over discretized series no point
diverges to infinity, but what you get is that some nearby points can differ by orders of magnitude and as you
increase the level of resolution in Benzi et al.’s model these differences increase. Unbounded series are more
difficult to deal with, and they carry on specific processing problems, as for instance the lack of integrability.
In spite of the popularity of some unbounded multifractals as log-Normal multifractals, those models fail to
describe some essential properties present in actual physical signals, and should be always taken as an approx-
imation to real situations (see discussion in [7]).
tice that, according to the model [12,43,5] �1 < h1 < 0.
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4.3. Construction of the benchmarks

We have designed a set of benchmarks to analyze how different variables affect the performance of the val-
idation methods. The selected variables are the length L (the total number of points) of each individual series,
the number N of series that will be processed together (forming a coherent statistical ensemble) and finally the
type of spectrum, which in turn depends on the choice of the appropriate parameters. For this article, we have
combined them to generate several datasets. The first set defines the Illustration Benchmark, constructed for
illustration purposes, which consists of 12 ensembles representative of some typical choices of the three
selected variables. The second set defines the Size Benchmark in which length and number of series vary
exhaustively. The third set allows to define the Spectrum Benchmark, which consists of ensembles formed
by just one series of maximum length but with varying type of spectrum and choice of parameters. The details
of each benchmark are given below.

Illustration Benchmark: For each type of spectrum we have modified the parameters to generate narrow and
wide spectra. Thus, we have denoted by PN and PW the narrow and the wide log-Poisson spectrum while NN
and NW denote the narrow and the wide log-Normal spectra. For each case we have generated three ensembles
of varying sizes. Table 1 summarizes the characteristics and labels associated to each ensemble in this benchmark.

Size Benchmark: For the construction of the size benchmark, we take again the four spectra considered
above (namely PW, PN, NW and NN) but instead of the three choices of size we have previously selected,
we let N and L to take any possible value in a given range. For N we consider the values 1, 10, 100, 1000
and 10000; L can take the values 1024, 4096, 16,384 and 65,536. We have thus 20 possible ensembles (5 values
of N · 4 values of L) for each spectrum, so that this benchmark totalizes 80 ensembles of varying sizes. Notice
that the C-codes given in [9] are prepared to analyze extensive benchmarks of this type.

Spectrum Benchmark: This benchmark is formed by ensembles of constant size: N = 1 and L = 65,536.
Here, we change the parameters defining the singularity spectra. For log-Normal spectra we have chosen
all the possible combinations of hm and rh, where hm = �1, �0.5, 0, 0.5, 1 and rh = 0.33, 0.5, 1, 2 (20 possi-
bilities). In the case of log-Poisson spectra, as there are constraints on the parameters (1 P d �
D1 > �h1 > 0), one cannot vary them freely over all the range of possible values. We will use all the couples
(h1,D1) compatible with the constraints above, where h1 can take the values �0.2, �0.4, �0.6, �0.8 and D1
takes the values 0, 0.2, 0.4, 0.6. This leads to 10 possible spectra.

4.4. Influence of the variables

In the design of the benchmarks, we have paid special attention to produce ensembles of varying length,
number of series and type of spectra, as we know that they are going to influence the performance of the val-
idation methods. The length L of the series is important if the method requires of a sequence long enough to
uncover some range of exponents which could be absent due to the discretization. The number N of series has
a different effect than L: as N increases, we gain access to negative dimension manifolds, and at the same the
uncertainty in the positive dimension manifolds is decreased. The total size (that is, L · N) would be the rel-
evant variable if the method is very demanding in statistics, which is usually the case for methods based on the
Legendre spectrum. The third relevant variable is the multifractal spectrum of the generated series. Some spec-
tra covering a wide range of singularities are worst analyzed by methods which rely on too strong regularity
conditions or require comparing quantities with are numerically difficult to control (for instance, when
moments diverge very quickly).
Table 1
Illustration benchmark

N = 1, L = 16,384 N = 10, L = 4096 N = 100, L = 1024

h1 = �0.5, D1 = 0 PW1 PW2 PW3
h1 = �0.25, D1 = 0.25 PN1 PN2 PN3
hm = 0.5, rh = 1 NW1 NW2 NW3
hm = 0.25, rh = 0.33 NN1 NN2 NN3

The boxes contain the labels associated to each ensemble.
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Fig. 1. Example series in the benchmark. Top: series from ensembles PW1 (left) and PN1 (right). Bottom: series from ensembles NW1
(left) and NN1 (right).
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In Fig. 1, you can see the graphical representation of the long series for the four multifractal spectra in Illus-
tration and Size Benchmarks. Series on the left side of Fig. 1 have wider spectra than those on the right. For
the two series on top of the figure (log-Poisson type) the differences are not so dramatic, because log-Poisson
multifractals have a singularity range bounded from below (which excludes explosions, bursts to infinity). On
the contrary, the two series on bottom of the figure (log-Normal type) are unbounded and hence any value of
singularity is allowed. This is dramatic for the series on the bottom left, that with wider spectrum, in which the
orders of magnitude vary enormously in the same series. The log-Normal series on the bottom, right, has a
narrow singularity spectrum and hence looks more physically reasonable. However, notice that a log-Normal
series would eventually have bursts of any order if it is long enough.

5. Results: description of the general features of each method

5.1. M method on the Illustration Benchmark

In Fig. 2 we present the results of applying M method over the benchmark. To make the comparison easy,
the theoretical spectra are plotted together with the corresponding estimates. In this implementation the range
of scales considered for the regression runs from r = 4 points to r = 100 points. We have considered 65
moments non-uniformly sampled in the range p2 [�4,8]. The list is: plist = {�4, �3.6, �3.2, �3, �2.8,
�2.6, �2.4, �2.2, �2, �1.8, �1.6, �1.4, �1.2, �1.1, �1, �0.9, �0.8, �0.7, �0.6, �0.5, �0.4, �0.3, �0.2,
�0.1, 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1,
1.05, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.3, 2.6, 3, 3.5, 4, 5, 6, 7, 8}.

This technique is very demanding in data, requiring larger datasets to obtain the parts of the spectrum cor-
responding to small dimensional components. This problem comes from the fact that we need to compute high
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Fig. 2. Singularity spectra with M method. First row: ensembles PW1, PW2 and PW3; second row: PN1, PN2 and PN3; third row: NW1,
NW2 and NW3; fourth row: NN1, NN2 and NN3. Solid lines: theoretical spectra.
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order positive moments in order to sample the most singular values (left tail of the spectrum), while we need to
sample high order negative moments to obtain the most regular values (right tail of the spectrum). Take into
account that the distribution of �r has a large kurtosis even for the most uniform of our ensembles (see Fig. 3)
and that, in addition, it has a very small mode. These two properties (high kurtosis, smallness of the mode) are
characteristic to all multiplicative processes and make the evaluation of the histogram by means of the M
method more complicated, as we next detail.

As the distribution of �r has high kurtosis, it has heavy tails which are difficult to estimate since the probability
of observing events beyond a certain threshold is very small and many samplings must be made before getting a
value on that region. Thus, this region is undersampled. Let us now suppose that the multifractal distribution is
such that the variable �r has a finite maximum, denoted by i�ri1. For large values of p, the value of h�p

r i is dom-
inated by the maximum, h�p

r i � k�rkp
1. On the contrary, the value of the empirical estimate of the moment p,

h�exp;p
r i, is dominated by the empirical maximum Mr, so h�exp;p

r i � Mp
r for large p. Hence, the quality in the esti-

mation of the most singular exponent h1, as k�rk1 � rh1 , depends on whether Mr provides a good estimate of
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Fig. 3. Empirical histogram of �r for r = 16, obtained for Ensemble PW1.
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i�ri1 or not. In general, M method will tend to truncate the left tail due to the difficulty of giving an accurate,
steady estimate of i�ri1 in a broad range of scales. The situation is even more dramatic if the maximum is not
finite, as the behavior of the estimates tend to deviate more and more as the order of the moment grows.

To understand the second problem affecting M method let us consider Fig. 3. The shape of the probability
distribution of �r is a direct consequence of the multiplicative process associated to the multifractal model under
consideration. All the distributions we are considering are unimodal, so there is only one mode (i.e., most prob-
able value). As the mode is very close to zero and the variable �r is positive, the left side of the probability dis-
tribution changes very fast from zero to the highest probability (all the multifractals we have generated verify
that the probability of �r = 0 is strictly zero). The difficulties to resolve this narrow region between �r = 0 and
the mode affect the quality in the estimation of negative moments, which in turn affects to the quality of the
estimates of positive singularity exponents and the right tail of the singularity spectrum (notice that the left tail
of the histogram describes the right tail of the spectrum, i.e., the right part of D(h) corresponds to moments
p < 0). In fact, the issue ‘‘mode smallness’’ affects all the methods. For instance, notice that in many cases
the right tail of the spectrum scales linearly, which suggests a linearization (due to lack of sampling) of the nar-
row range between 0 and the mode in the histogram of the corresponding measure.

Fig. 2 shows that M method provides a good estimation on bounded singularity spectra when they are nar-
row enough (ensemble PN), being much worst when the spectrum is broader. The problems are, in general,
accentuated on the right tail due to the already discussed ‘‘mode smallness’’ issue. Another drawback charac-
teristic to this method is the tendency to shift the curve, in the case of unbounded spectra. This problem seems
an effect of the integrability issue discussed in Section 5.3. The question is that, in order to evaluate h�p

r i, we
need to integrate over the whole space, that is, we assume that there is some weak type of translational invari-
ance. Translational invariance implies s1 = 0 for total support multifractals (i.e., the support of the multifrac-
tal is the whole real interval) [5], but in general log-Normal spectra have a value of s1 ¼ hm � 1

2
r2

h which is
different from zero if hm 6¼ h0

m, where h0
m ¼

r2
h

2
. The way in which moments are evaluated seems to shift all

the singularities by h0
m � hm in order to re-establish translational invariance; in fact, curves appear to be cen-

tered around h0
m. In general, as one does not have prior knowledge about the actual value of hm, there is no

simple way to correct this problem for M method.

5.2. WTMM method on Illustration Benchmark

In Fig. 4 we present our results when applying the LastWave scripts to the data. The list of moments is identical
to that used for the moments method, the analysis wavelet was that set as default (namely, second derivative of a
Gaussian). There is a sensitive dependence of the performance of WTMM method in the choice of the minimum
and maximum scales. For the Illustration Benchmark, we have carefully chosen the minimum and maximum scale,
taking into account the size of the ensemble, its sampling rate and the analyzing wavelet, in order to get the best
possible results. This procedure returned close but anyway different values for those scales depending on the
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Fig. 4. Singularity spectra with WTMM method. First row: ensembles PW1, PW2 and PW3; second row: PN1, PN2 and PN3; third row:
NW1, NW2 and NW3; fourth row: NN1, NN2 and NN3. Solid lines: theoretical spectra.
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ensemble; in the scripts given in this paper web-page you can find the specific choices for each one of the ensembles
in the benchmark. Notice that this method requires from expertised use and a considerable amount of supervision.

The curves show that, as for the moment method, WTMM method works better over narrow spectra.
WTMM method generally provides a good description of the central part of the singularity spectrum, but
in a very limited extent. WTMM method also linearizes the right tail, which can be connected with the ‘‘mode
smallness’’ problem. Regarding the quality of the estimation of the right tail, this can be improved by increas-
ing the number of vanishing moments of the wavelet, but then, it would induce some other severe constraints
over the method (see Section 7.2 for a discussion about the choice of the wavelet). In addition, this method has
a tendency to truncate the right part, an effect probably due to undersampling that we will next explain.

One of the theoretical, severe limitations of WTMM is the necessity of having isolated singularities,
because maxima lines are determined as local maxima of the wavelet transform. If the analyzed signal is uni-
formly bounded and the wavelet integrable, at any finite scale the wavelet projections T Wsð~x; rÞ are contin-
uous with ~x, so the maxima at any scale are isolated (unless the projection becomes constant). A similar
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argument – although a rather mathematically sophisticated one – can be used when the signal is not uni-
formly bounded. The question is that, over any bounded range of the signal (i.e., an interval) and a fixed
scale r we have access to a finite number of maxima lines. But we work with discretized signals, so we have
a minimum, finite scale r0, given by the resolution, at which we must stop the analysis. As a consequence, for
any sampled signal we will have a non-dense pack of maxima lines which end up at some particular points,
but not at every one. We will be able to determine the singularity exponent for those points which are on the
tip of a maxima line. The relative density of those ending points over the whole domain is determined by the
type of wavelet we are using; see discussion in Section 7.2. Jaffard proposed [44] a refinement to WTMM
which consists in restricting the computation of the partition function in the interval of width r to the largest
maxima. As a consequence, in the case the signal has singularities everywhere, only one WT modulus max-
imum for each interval of length r should be taken into account in the sum (12). Some other attempts have
been made to extend WTMM in order to obtain the singularity exponents of all the points in the sampling,
but the theoretical and practical difficulties are still very high; see the extensive discussion in [23].

The undersampling resulting from the extraction of maxima lines has two consequences. First, the method
becomes very demanding, as it dismisses a great part of the statistics (around 90% when using the second
derivative of the Gaussian) which means that the less represented components are obviously the most affected
ones. Second, less singular points tend to be underrepresented. As the maxima lines behave as rhð~xÞ (hð~xÞ: sin-
gularity exponent associated to the ending point) as r!0, a local maximum of rhð~xÞ with respect to ~x corre-
sponds to a local minimum of hð~xÞ. A point with a large singularity h0 will be a local minimum of hð~xÞ
only if the corresponding neighborhood only contains even larger singularities. As the value of h0 grows, this
possibility is more and more unlikely, leading to the observed underrepresentation of larger singularities.

To end with the discussion on WTMM method, it is noticed that for short series as those of ensembles with
labels ending in 3, disregarding the fact that those ensembles are the ones containing the largest statistics, the
estimates become unstable for the widest spectra (see PW 3 and NW 3 in Fig. 4). We think that this problem is
connected with the necessity in WTMM of having series large enough to evenly sample all the singularities.

5.3. GMWP method on Illustration Benchmark

In Fig. 5 we present the results obtained after our implementation of GMWP method. We have used a sim-
ple Gaussian function, which does not verify the ‘‘admissibility condition’’ required for representation wave-
lets [33], but which can anyway be used as an analysis wavelet. To obtain the singularity exponents at each
point we have covered a large enough range of scales which ensures both a good spatial localization and accu-
racy in their numerical values; for this paper we will take a range going from r = 1 point to r = 64 points. Our
choice is a good compromise, but the reader is encouraged to take our code, modify these values and perform
her/his own experiments. The scales are exponentially sampled, starting in r0 = 1 point, the ith scale being
ri = r0Qi for a scaling factor Q > 1 and such that rn = 64 points. We have chosen n = 6 (hence Q = 2) in
our experiences, but other values of n (equivalently, of Q) lead to similar results.

The limitations on GMWP method come from the fact that we must require the function (more properly,
distribution) |$s| to be integrable, in order to have a well-behaved multifractal measure l, defined as in Eq.
(13). Notice that this problem is not exclusive of this method but also affects the others. When working with
physical signals we should not worry too much about that, because any physical signal is bounded over com-
pact sets [45,46] and hence the divergences in the derivative must be integrable. Some signals in the benchmark
(notably, log-Normal ones) have unbounded singularity domains, which implies that there exist points with
singularities below h = �1 and hence the gradient is not integrable. But those signals also affect the stability
of methods such as WTMM, because even the signals themselves are not locally integrable.4 There is a way to
solve the integrability issue in the case of GMWP. Experimental exponents obtained from GMWP’s of discret-
ized signals with unbounded singularity range always appear shifted by a constant value g, such that the signal
becomes integrable. A simple way to obtain the value of g is to study the average GMWP at different resolu-
4 It should be noticed that despite of the fact that the log-Normal model is often used in the scientific literature the problem posed by the
lack of integrability has not been discussed in depth.
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Fig. 5. Singularity spectra with GMWP method. First row: ensembles PW1, PW2 and PW3; second row: PN1, PN2 and PN3; third row:
NW1, NW2 and NW3; fourth row: NN1, NN2 and NN3. Solid lines: theoretical spectra.
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tions: the average GMWP should be the same at any scale, but due to the shift it evolves as power-law with
exponent g. Once g is obtained, the raw singularities are shifted by �g. As you can see in Fig. 5, the results
have a very good quality (it seems however the shift was not well corrected in the case of ensemble NN2). In
fact, GMWP appears as the best method to obtain an estimate of the singularity spectrum (see Section 7).
5.4. GH method on Illustration Benchmark

In Fig. 6 we show the results for GH method. Not very much about the settings needs to be explained, as
the main virtue of this method is its simplicity. Let us only note that the derivatives are estimated by finite
differences. The main limitation of GH method comes from its tendency to linearize the right side of the spec-
trum. This behavior is a consequence of the ‘‘mode smallness’’ issue. The main virtue of the gradient method is
its outstanding quality in the determination of the left tail of the curve. It provides a sampling on the left tail
which is experimentally less dense than that of GMWP, but with greater accuracy.
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Fig. 6. Singularity spectra with GH method. First row: ensembles PW1, PW2 and PW3; second row: PN1, PN2 and PN3; third row:
NW1, NW2 and NW3; fourth row: NN1, NN2 and NN3. Solid lines: theoretical spectra.
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6. Results: dependence on statistics

6.1. Definition of the error measure

To perform a quantitative analysis of the quality of the outcomes we have defined as a measure of the error
the difference between the estimated De(h) and the actual singularity spectrum D(h), i.e., the normalized aver-
age deviation Ee, given by
Ee ¼
hjDðhÞ � DeðhÞjiðhmin;hmaxÞ

hmax � hmin

; ð32Þ
where the average h�iðhmin ;hmaxÞ is taken over the total range of singularities (hmin,hmax) that we want to describe.
We need to fix the total range of singularities to allow comparisons among the results obtained with different
statistics, because the range of singularities that a method can actually solve depends on the statistics. When a
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method does not return a valid value of estimated spectrum for a value of h in the studied range, we assume
that the estimated spectrum is 0 (which is our minimum reference value to consider a singularity manifold):
Table
Estima

Under
Deðh	Þ ¼ 0 8h	 2 ðhmin; hmaxÞ with no valid Deðh	Þ. ð33Þ

We fix the range of singularities by the two zero-crossings of the theoretical spectrum, D(hmin) = D(hmax) = 0.
As the singularity spectra are concave, by construction D(h) > 0 "h2 (hmin,hmax). So, the range of singularities
that we will consider concerns all the singularity components which have positive dimension, so with proba-
bility 1 they can be found in any series (negative dimensions, as commented before, represent events happening
with a certain probability and typically less than once per series, see [35]).

In addition, in the definition of normalized average deviation E, Eq. (32), we have normalized the average
deviation by the size of the considered range of singularities. This should help to compare estimation errors
among ensembles having spectra of different width: wider spectra imply a higher computational cost for the
validation methods and greater average error, but at the same time they describe a wider range of singularities.
By normalizing by the size of this range we obtain an estimation which is independent of the range width.

We will next compare the performance of the methods by tabulating the errors associated to each method,
using normalized average deviations as estimates of those errors. To ease a fast visualization of the results, we
have applied the following color convention for the boxes of the tables:
6.2. Analysis of Size Benchmark

The Size Benchmark contains 80 ensembles and for each one we have applied the four validation methods.
Tables 2–5 summarize the results for the ensembles in the Size Benchmark.
2
tion errors for M method applied to Size Benchmark

lined values correspond to the spectra in the Illustration Benchmark.



Table 3
Estimation errors for WTMM method applied to Size Benchmark

Underlined values correspond to the spectra in the Illustration Benchmark.

Table 4
Estimation errors for GMWP method applied to Size Benchmark

Underlined values correspond to the spectra in the Illustration Benchmark.
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Size Benchmark has been constructed in order to assess the quality of the methods depending on the
parameters defining the size of the statistics (namely, N and L), and the convergence speed of the different esti-
mates to the correct spectra, according to these parameters. We analyze the results method by method:



Table 5
Estimation errors for GH method applied to Size Benchmark

Underlined values correspond to the spectra in the Illustration Benchmark.
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 M method: There is a weak tendency to error reduction when L or N is increased. However, the lin-
earization of the right tails (for all types of spectra) and the displacement in the position of the curve
(for log-Normal spectra) forces the error to saturate at rather large values. Hence, this method only
gets a slightly beneficial effect of increasing the series length L or the amount N of series
processed.

 WTMM method: It achieves a noticeable improvement with respect to M method for wide spectra, specially

because this method seems to eliminate the displacement present in the M method. However, WTMM
method is still affected by the linearization of the right tail, and this effect is much more important than
in the M method for narrow spectra, so the results obtained by WTMM on PN and NN spectra saturate
at larger values than those of M method. As a consequence, WTMM does not exhibit a decrease in the
error when statistics is increased, but a convergence towards a given value result of the systematic deviation
between the estimated right tail and the theoretical one.

 GMWP method: This method provides the best overall performance, and it is also the only method which

exhibits a certain convergence to smaller errors when L or N are increased. This type of convergence is
almost perfectly verified for increasing N. However, for increasing L this convergence is not always evident,
specially for small values of N. This is not so surprising, because the series are generated independently at
different L, and for small N the particular series obtained at a smaller length could be better estimated than
those at the greater one, specially taking into account that the distributions of the wavelet coefficients in
Benzi et al.’s model are very kurtotic. However, as N increases the particularities of the series should be
less important and so the errors should converge to the same number. A case which deserves some comment
is NN for L = 4096, N = 10, which coincides with the case NN2 in Illustration Benchmark. In this case, the
estimate has an anomalously large error. This is a consequence of the bad correction of the shift induced by
the non-integrability for that particular case, as shown in Fig. 5.

 GH method: This method has the second best overall performance, in spite of being affected by the linear-

ization of the right tail. It also exhibits convergence with increasing L and N up to attaining a minimum
error level, related with the linear right tail, that cannot be further diminished. This error level seems to
be much reduced than those of M and WTMM methods.
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6.3. Compared performances on Spectrum Benchmark

For Spectrum Benchmark we have generated 35 different singularity spectra. Tables 6–9 summarize the per-
formance of the four validation methods on the Spectrum Benchmark.

Spectrum Benchmark was designed to show the sensibility of the methods under different types of spectra.
The two characteristics of those spectra which seem to affect the different methods are the spectrum width and
the average degree of singularity or regularity of the spectrum (that we measure as the singularity exponent
associated to the manifold of maximum dimension). According to the method, we can make the following
comments:


 M method: On the log-Normal statistics, the M method is strongly affected by the incorrect placing of the
spectrum: the results appears always centered around h = 0. For that reason, the column referring to hm = 0
is the one with the smallest value (except for rh = 1, because of the linearization of the right tail makes the
configuration hm = 0.5 more advantageous). For the log-Poisson statistics the errors are moderate, and in
all instances induced by the linearization of the right tail.

 WTMM method: Errors on the log-Normal statistics are smaller than those of M method. The error is

always a consequence of the linearization of the right tail. Wider spectra are better described than the nar-
row ones. For log-Poisson, errors are moderate except for the narrowest spectra, for which the linearization
effect induce severe errors.

 GMWP method: Errors are moderate to small, except for the the narrowest log-Normal with the most sin-

gular mode (severe error) and the narrowest log-Poisson (medium error). Anyway, this method is once
more the one attaining the best performance.

 GH method: Errors are important on the narrowest log-Normal series, and in the narrowest log-Poisson,

due to the linearization effect. In the other cases the errors are moderate in average.
Table 7
Estimation error for the WTMM method over the Spectrum Benchmark

Table 6
Estimation error for M method over the Spectrum Benchmark



Table 8
Estimation error for GMWP method over the Spectrum Benchmark

Table 9
Estimation error for GH method over the Spectrum Benchmark
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7. Discussion

7.1. Analysis of the compared performances

Let us now summarize the application domain, advantages and limitations of each method.
M method is a conceptually simple method, easy to implement but in general, rather demanding in data. In

addition, the observed linearization of the right tail of the spectrum makes impossible to reduce the error
below a bound, which is the error associated to approximate the right part of the curve by a straight line.
Hence, any increase in the statistics can only decrease error up to the bound, then it does not longer evolve.
In addition, for unbounded spectra there is another source of systematic error: spectra appear shifted. The
method tends to shift the spectra and to produce a translational invariant equivalent: in fact, we have observed
that for the datasets in Spectrum Benchmark all the evaluated spectra for a given value of rh roughly coincide,
disregarding the value of hm. This issue has no simple solution. The overall performance of this method is med-
ium, with errors ranging from small to moderately large.

WTMM method is, by far, the one with the most involved technique, but some reasons justify its use under
some circumstances. We next summarize four main reasons in favor of WTMM formalism. First reason,
because of its representation capability: Maxima lines reduce the signal to an ‘‘essential’’ multiresolution rep-
resentation. The different features show up either as scale invariant objects (unlimited maxima lines) or as fixed
scale objects (maxima lines which start at the ‘‘detection’’ scale of the object). The argument does not favor
WTMM method with respect to others, but the use of maxima lines can be justified as a ‘‘physically signifi-
cant’’ representation. The second reason concerns its filtering capability: Non-intermittent signals have fre-
quently large-scale contributions over imposed to the multifractal signature, which need to be filtered by
(appropriate) wavelet projections. Anyway, notice that GMWP and GH methods are also capable to filter
large-scale contributions. Third reason, because of the WTMM capability to correctly assess oscillating sin-
gularities: some particular spatial arrangement of singularities require to tightly follow the maxima lines in
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order to obtain a correct estimate of the singularity exponents [47]. Finally, because of some mathematical
studies, which have proved that the WTMM method is appropriate to obtain the singularity spectra on a spe-
cial type of functions [48], while for such functions M method only gives partial access to the correct spectra.

It is thus evident that the WTMM method has strong mathematical foundations and a marked capability to
filter spurious tendencies with oscillating singularities. Besides, this method implies a considerable improve-
ment with respect to the M method, which was the historical reason for its creation. However, this method
has many problems in practice and only attains a medium to poor performance. First, it is difficult to correctly
tune the WTMM parameters and an important degree of expertise on the method is required. Second, the
WTMM method is very demanding in data: maxima lines can represent less than 10% of the total number
of points. Third, estimates are unstable partly due to problems in the sampling of the maxima lines and partly
due to the necessity of attaining a high numerical accuracy and data size to evaluate high order positive and
negative moments. Fourth, this method also linearizes right tails, so errors saturate in a level associated to the
systematic deviation between the straight line and the actual spectrum. Concerning the sensitivity to the vari-
ables defining the ensembles, errors show no clear tendency when size of length of the series are modified. This
strange behavior calls into question the assumed additivity of the partition functions: in some of the ensembles
analyzed here, when we let the number of series to grow, a few new contributions which introduce maxima
lines associated to high order singularities completely distort the behavior of the partition function at negative
moments and the right tail of the spectra appears corrupted. There is no simple way to correct, and the prob-
lems when dealing with negative moments has been recognized as one of the main problems of moment-based
methodologies. Concerning performance, the method provides a medium performance on wide spectra, while
it has a poor performance on narrow spectra, mainly due to the fact that the right tail is quite often corrupted.
This method should be thoroughly tested in order to understand these limitations and solve them.

GMWP method gives a precise, stable estimation of singularity spectra, with the additional capability of
estimating error bars (see Section 7.3). This method has an important bonus with respect to the other: it gives
access to point information ðhð~xÞÞ. This method is the most stable one and possesses the best global perfor-
mance on the benchmark. Increases in size and length tend to diminish error, and the quality of the estimates
is slightly better for wide spectra than for narrow spectra. It can be affected by non-integrable spectra
(for instance, the case of NN spectrum for N = 10, L = 4096, which corresponds to NN2 in Illustration
Benchmark).

GH method, in spite of being extremely simple and reproducible gives an excellent estimation of the left tail
of the singularity spectra; however, it systematically linearizes the right tail. It allows to connect experimental
properties (as intermittency) with the multifractal theory. Any increase in statistics tend to reduce the error
committed by this method, up to the bound associated to the linearization of the right tail; this lower bound,
however, is significantly smaller than those of M and WTMM methods, and for that GH method performs
better than them. For GH method, errors are greater over narrow spectra than over wide spectra, because
the linearization of the right tail induces a faster accumulation of error.

7.2. Projecting the signal or projecting the modulus of its gradient: a key issue

One of the main reasons of the improvement in performance of GWMP with respect to WTMM comes
from the fact that the wavelets we have used to project the modulus of the gradient are of lower order
(i.e., have smaller number of zero-crossings) than those which are required to perform WTMM. As we have
seen, WTMM requires isolating maxima lines, which implies being able to resolve (distinguish) the wavelet
projections from two close points. For ideal, continuous series we would never have this problem, but we need
to work with real, discretized data and the actual value of wavelet projections can only be approximated, and
they can be accurately estimated only for a precise range of scales. The minimum distance at which two max-
ima lines can appear is directly proportional to the minimum spread of the wavelet, the later being defined as
the minimum size at which empirical wavelet projections are reasonably well estimated. The minimum spread
is, at least, of the order of the discretization size of the series, the series box, but some wavelets have larger
minimum spreads, see Fig. 7. The point is that we cannot allow a significant amount of the area of a positive
peak and of a negative valley to be contained inside the same series box, because their contributions would
almost cancel, anomalously reducing the contribution of that series box. Hence, any analysis must stop at
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scales greater than the minimum spread. In the case of the results shown in this paper using WTMM method,
as the minimum spread of the second derivative of the Gaussian is four or five pixels, it is rather natural to
observe maxima lines separated at least 10 boxes (see Fig. 8).

Let us now examine the maxima lines from WTMM method for an application example in Fig. 8. Observe
the spatial regularity in the line arrangement. The WTMM is probably isolating a maxima line each time it can
resolve it from the precedent one. In addition, for the analyzed statistics, maxima lines are almost x-indepen-
dent, which confirms that, for this example, it is not necessary to follow maxima lines in order to compensate
oscillations. Changing the signal by the gradient removes the difficulty of dealing with high-order wavelets
(i.e., wavelets with many zero-crossings) at the cost of introducing the difficulty of finding a good estimate
of the derivative. We used a simple definition for the derivative, the finite difference (i.e., s 0(x) =
s(x + 1) � s(x)). This definition is related to the linear increment formalism originally derived for the assess-
ment of multifractal behavior in turbulent flows [11]: the modulus of the gradient |s 0|(x) is approximated by the
linear increment at the distance of one resolution box, |s(x + 1) � s(x)|. At the resolution scale the relative
importance of long-range correlations must be negligible if the signal can be assessed as multifractal. The
use of the non-linear function ‘‘absolute value’’ is crucial; without it, the increments would sum up and the
final results would be dominated by differences of the signal at the finite scale r, which are indeed affected
by long-range correlations.

7.3. Error control in histogram-based methods

GMWP and GH methods offer the advantage of enabling a certain control on the sampling error incurred
by fluctuations in the statistics. By a simple reasoning on the construction of the empirical histograms, we can
associate an error bar to each point in the singularity spectrum. The argument goes as follows.
Fig. 8. Maxima lines for ensemble PW1 (log-Poisson h= � 005, d � D= 1, in a single 16,384-point series), in three different zoom
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Given a random variable h, a histogram box can be interpreted as a continuous range of values
Ia = [ha,ha + 1) with associated probability pa. Disregarding the other boxes in the histogram (that is, taking
them as independent, which is reasonable if the number of boxes is large) the probability for a single point
of being inside the box Ia is pa. If we have a sample of N independent realizations of h, {hi}i=1, . . . , N, we
can construct a simple estimator of pa as p̂a ¼ N a=N , where Na is the number of values of h falling inside
Ia. The random variable Na, by construction, has a binomial distribution of parameter pa. Hence, if we denote
by ÆÆæ the expectation values then we have that ÆNaæ = N pa and r2

Na
¼ hN 2

ai � hN ai2 ¼ Npað1� paÞ � Npa, the
last approximation being valid when pa� 1. If Npa > 30 we can approximate the binomial by a Gaussian. We
will assume that N is large, that pa is very small and that Na is very close to its mean value, so we concentrate in
cases such that Na > 30. Under those conditions, p̂a has a normal distribution of mean pa and variance pa/N.
Now, it is very easy to assign a significant error bar to the measurements by confidence intervals. We will seek
a �99% confidence, what implies taking 3 standard deviations around the mean in a Gaussian, so we state that
p̂a 2 pa � 3

ffiffiffiffiffi
pa

N

r
; pa þ 3

ffiffiffiffiffi
pa

N

r� �
with confidence of 99%; ð34Þ
which we simplify to
p̂a 2 pa 1� 3

ffiffiffiffiffiffiffiffi
1

Npa

s
; 1þ 3

ffiffiffiffiffiffiffiffi
1

Npa

s !
ð35Þ
and now we make the approximation Npa � Na to finally obtain
p̂a 2 ðp̂0
a � dp̂a; p̂

0
a þ dp̂aÞ ¼ pa 1� 3N

�1
2

a ; 1þ 3N
�1

2
a

� �
; ð36Þ
where the confidence interval for p̂a has been expressed in terms of an uncertainty radius dp̂a. Notice that the
center of the confidence interval, p̂0

a, is exactly pa. Something interesting about Eq. (36) is that the uncertainty
radius is proportional to the value of pa, and so it can be expressed as a percentage error over pa. Assuming
that N

�1
2

a is small enough, we can obtain a relation analogous to Eq. (36) for the estimation of pa from the value
of p̂a and Na
pa 2 ðp0
a � dpa; p

0
a þ dpaÞ ¼ p̂a 1� 3N

�1
2

a ; 1þ 3N
�1

2
a

� �
; 3N

�1
2

a � 1 ð37Þ
from which we conclude that the confidence interval for the estimation of the parameter pa is centered around
p0

a ¼ p̂a and has an uncertainty radius dpa ¼ 3p̂aN
�1

2
a . In this derivation we have assumed that Npa � Na and an

explicit use of the following constraints: pa� 1, N� 30, Na P 30 and 3N
�1

2
a � 1. Under such requirements,

the interval defined in Eq. (37) is significant up to a 99% of confidence. We take this estimate as a first estimate
of the error bars, and defer the study of intervals with small Na to a specific analysis. Once the error bars for
the histogram are known, it is quite simple to propagate the error on Eq. (17) to find the error bars associated
to any spectrum obtained from the histogram formula. Thus if we know the error in a value of the histogram,
q(h) ± dq(h), then by using Eq. (17) we get the error in the spectrum D(h) ± dD(h) as
dDðhÞ ¼ 1

log r0

dqðhÞ
qðhÞ . ð38Þ
From Eq. (37) we have that dqðhÞ ¼ 3qðhÞN�
1
2

h , which substituted in the preceding equation yields
dDðhÞ ¼ 1

log r0

3N
�1

2
h . ð39Þ
To give some intuition on the figures, let us suppose that for a given value of h we record Nh = 81 events. In
this case, 3N

�1
2

h ¼ 0:33, what means a percentual variation of 33% in the value of the probability. In terms of
error in the singularity spectrum, for a 1024-record series the value of dD(h) would be �0.05, and for a 16384-
record series the uncertainty falls to dD(h) � 0.035. Conversely, to attain a precision of dD(h) = 0.01 would
imply a sampling of Nh = 1874 events for a 1024-record series, and of Nh = 956 for a 16384-record series.
The values indicate that we can have a moderately good precision, of order 0.05, in the determination of
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the spectra even for moderately long series, but they also imply that a large increase in the statistics only leads
to moderate improvements in accuracy. In Fig. 9 we show two examples on the estimation of error bars for the
singularity spectra in a histogram-based validation method (GMWP). As expected, error bars decrease in the
parts with greater probability and increase for the least probable singularity values, which would require larger
and larger datasets in order to allow an accurate estimation of the associated fractal dimension. The advantage
of obtaining explicit error bars lies in the fact that they give some intuition on the quality of the estimate. It
should be noticed, however, that they can only inform about the deviations which are of random nature; any
systematic source of error will not be counted.

8. Conclusions

In this paper we have tested the performance of four different methods employed in the evaluation of
multifractal spectra from experimental data. Some of the methods allow for several possible different imple-
mentations. We have concentrated in one particular, general enough realization for each one of the methods
involved. Doing so we pretend to give a precise idea on the particularities, scope and limitations of each meth-
odology, beyond its precise work around. In the same spirit, we have discussed the causes of the observed devi-
ations, trying to explain them as consequences of the method under study. Our goal has been to make explicit
the requirements on the data under analysis that should direct our choice of one method before another.

The four validation methods we have tested can be named as moment (M) method, wavelet transform mod-
ulus maxima (WTMM) method, gradient modulus wavelet projection (GMWP) method and gradient histogram
(GH) method. Each one is adapted to a different aspect of the theory and/or data type. We have produced a
benchmark of synthetic multifractal 1D series as test data ensembles. The synthesized signals have known spec-
tra, which makes it very easy to compare experimental and theoretical spectra. We have thus systematically
made an assessment of each method for different data lengths, ensemble sizes and type of theoretical spectra.

Concerning the performance depending on the properties of the benchmark, we have seen that all the meth-
ods always give better estimates of the left part of the spectra than of the right part. Besides, as the spectrum
width increases the quality on its determination decreases (which is really dramatic for methods such as
WTMM). We have also observed that the high kurtosis of the histograms associated to multifractal variables
is at the origin of the ‘‘mode smallness’’ issue, which is responsible to the marked tendency of all the validation
methods except GMWP to linearize the right part of the singularity spectra. In addition, when dealing with
unbounded spectra, new problems arise, as the presence of constant shifts due to the lack of integrability
of the measured quantities. Concerning the compared performance, the main conclusion of our study is that
GMWP seems to be the method with the best overall performance and stability; in addition, this method pro-
vides error bars on the estimation.

Concerning the individual performances, we see that M method has a medium performance. The method is
very demanding, and requires large datasets to infer the tails. The problems with M method are that it has a
tendency to linearize the right tail and it shifts unbounded spectra. Concerning WTMM method, it has uneven
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performance. This method is even more demanding than M method. The quality on the estimate is very
affected by series length and so the results are very unstable when data series are short, even with large data-
sets. The problems specific to WTMM include the linearization of the right tail and that the implementations
may produce non-convex curves. In the results presented here, we have used one particular, freely accessible
implementation (LastWave), but we have also tested other software tools (WaveLab, FracLab, etc.) obtaining
slightly different results but with the same main difficulties. We have even implemented our own version of the
method in the code we offer along this paper, see [9], and the results obtained were very similar. The problems
with WTMM method come from the cost of having a technique suitable to deal with oscillating singularities.
It seems that the beautiful mathematical formulation needs to be refined in several ways to eliminate some
artifacts. Moreover, present implementations introduce a lot of parameters that require a careful, precise tun-
ing. Concerning GMWP method, it has a good overall performance. It does not linearize the right tail of spec-
tra. As a bonus, it allows to estimate error bars (this is a feature that we have not used in this paper). Finally,
concerning GH method, it has very good performance on the left tail of the spectra, and very bad on the right
tail, which is always linearized. As GMWP method, GH method also allows for error bar estimation.

About the possibilities of improving the existing methods, it should be remarked that in bounded multifrac-
tals the left tail of the singularity spectrum contains enough information to determine the whole spectrum. The
left tail is connected with the positive p moments and if the positive moments do not diverge with p too fast the
whole distribution can be retrieved from them [49]. As a matter of fact, bounded multifractals correspond to
real, physical signals while unbounded multifractals are essentially mathematical objects. So, in practical
applications it will be always more critical to attain a good estimation of the left tail of the spectrum than
of the right tail. All the methods validated in this paper provide a better determination of the left tail than
of the right part. Hence, it should be possible to process the information on the left tail and to correct any
deviation on the right tail. Such a procedure could be used to improve all the methods discussed in this work,
and this is an interesting, open possibility.
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